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A striking resemblance between the normal-field instability in ferromagnetic fluids and
the interfacial mode of the thermocapillary instability in viscous fluids is presented.
A nonlinear evolution equation describing the dynamics of the free surface for a
ferrofluid layer subject to a uniform normal magnetic field is derived, and compared
to that for a thin viscous layer heated from below. Their similarity predicts the
possibility of mutual nonlinear stability control.

1. Thermocapillary instability

There are two distinct modes of thermocapillary instability in liquid layers heated
from below. Through a careful linear stability analysis, Goussis & Kelly (1990) report
that thin layers are subject to the interfacial mode which is accompanied by surface
corrugations, while thick layers become unstable by the convective mode which does
not require surface deformations. The dynamics of a thin liquid layer thus can be
approximated by a nonlinear evolution equation of the Benney (1966) type, which
is derived by applying the long-wave asymptotics. For a layer of mean thickness d,
kinematic viscosity v, density p, thermal conductivity k, and surface-tension coefficient
y (with the air), the evolution equation is written as

BiM h2h,
P | (1 + Bih)?

where h(x, ) is the local layer thickness non-dimensionalized by d and subscripts
denote partial differentiations. Here a viscous time scale d?/v is used. The
non-dimensional parameters are the Biot number Bi=hd/k, Marangoni number
M =dBAT/(2pvk), Prandtl number P, and surface-tension number §=yd/(3pv?),
where h, 8, and AT are the heat-transfer coefficient, thermocapillary coefficient, and
temperature difference imposed, respectively.

Numerical integration of the evolution equation (1.1) with appropriate boundary
conditions is a convenient way of studying the nonlinear flow development for
layers subject to thermocapillary instability. By comparing with a finite-element
computation Krishnamoorthy, Ramaswamy & Joo (1995) report that (1.1) is an
excellent approximation of the original free-boundary problem unless the free surface
locally steepens significantly, in which case (1.1) overestimates surface slopes and
peaks. Substantially more nonlinearities need to be included then. A weakly nonlinear
analysis can be performed by writing the solution to (1.1) in a Fourier series and
extracting a dynamical system for the Fourier coefficients. Various tools then become
available for predicting the fate of the heated layer.

hl + :| + S(h3hxxx)x = 07 (11)
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2. Normal-field instability

A uniform magnetic field applied perpendicular to a ferrofluid layer can cause
spontaneous corrugations of the surface, which is reported by Cowley & Rosensweig
(1967) as the normal-field instability. In addition to hydrodynamic equations the
system is described by Ampere’s law V x H =0 for the magnetic field H and the
Maxwell equation V- B =0 for the magnetic induction B in all phases. The magnetic
induction is related to the magnetic field by B=uH, where p is the magnetic
permeability with a minimum value w, for vacuum. The magnetic susceptibility of a
medium then can be defined as /o — 1= — 1, which vanishes for a non-magnetic
material. The normal-field instability necessarily accompanies free-surface deforma-
tions, and occurs with long waves. A finite-element computation performed by
Matthies & Tobiska (2005) for the fully coupled system confirmed the linear analysis
and showed some nonlinear flow developments.

As a way of avoiding enormous computational effort with the full system and further
studying the normal-field instability, we can apply the same long-wave asymptotics as
those used for deriving (1.1). All three phases (substrate, ferrofluid, and air) must be
considered, and the resulting analysis is somewhat more involved. It is nevertheless
quite straightforward. If we use the constitutive relationship

a=—<p+'l;0H2> +pv(Vu +Vu')+ BH, (2.1)

where o and u are stress tensor and velocity vector, respectively, and assume that the
magnetic susceptibility of the air and the substrate are zero, the evolution equation
becomes, as shown in the Appendix,

1 1
h, + 51102 (1 — ) (B*hy)e + S(BPhyyy )y = 0, (2.2)
o

where the intensity of the uniform magnetic field imposed H, is non-dimensionalized
as H = ud*H}/(pv?). For a ferrofluid o > 1, and so the coefficient A = HZ (1 —1/a)/2
for the diffusive term is positive, giving rise to the normal-field instability.

It is interesting to note that for common small-Biot-number flows, where Bih < 1,
(1.1) and (2.2) are almost identical. The onset of instability and subsequent flow
developments can be identically understood using BiM/P since (1 4+ Bih)=1.
Dynamical system approaches for the thermocapillary instability would apply to
the normal-field instability as well. Numerical integrations of (2.2) have indeed shown
that all the important features in (1.1), such as period-doubling bifurcations and
incipient rupture, are captured in (2.2). We will not repeat these results here. The
evolution toward typical spiked surfaces under normal magnetic fields is simulated
instead. Among numerous cases investigated, the ones obtained by stretching (2.2) to
its limit are presented.

Figure 1 shows how an initially smooth drop would evolve after a magnetic field
is switched on. For clarity, only half of the drop is shown, with its edge and the
contact angle fixed in their initial states. The smooth line showing # =1 at the centre
(x =0) is the initial shape, while the line showing multiple incipient ruptures and the
largest secondary peaks is for the instant at which the numerical integration of (2.2) is
terminated due to rupture (h < 107%). A fourth-order central-difference scheme is used
in space with second-order fully implicit time marching and an absolute error bound
of 107, The formation of the spikes and appearance of the secondary spikes between
the main spikes can be understood by analogy to the corresponding thermocapillary
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FiGURE 1. Shape of a ferrofluid drop at ¢+ = 0 and near rupture time (a) t =570;
(b) t=130;(c)t=32. A=S=1.

instability, which is discussed by Joo, Davis & Bankoff (1993) for flows with periodic
disturbances. In figure 1(a) surface shapes at an early and a late stage of the evolution
are shown additionally. With the increase of the magnetic field, the rate of growth
of the spikes and of the incipient rupture increases rapidly. The rupture time then
decreases rapidly with A, and so the vertical dimension of the spikes at the final time
step shown indicates little dependence on the magnetic field. The horizontal dimension
of the spikes appears to decrease with the magnetic field. The number of conspicuous
spikes, however, is not proportional to A. The decrease in the horizontal dimension
is achieved rather by concentrated spike population near the centre of the drop.

In figure 2 an evolution of a continuous ferrofluid film is shown. The flat line with
a small dimple at the centre shows one period of the initial surface shape, while
the highly corrugated line represents that near rupture. The amplitude of the spikes
developed is maximum near the centre, and decreases with the distance from the initial
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FIGURE 2. Shape of a horizontally periodic ferrofluid layer at t =0 and rupture
time r =83.6 for A=S=1.

disturbance. The number of spikes and their horizontal dimension, however, appear
to be independent of the location and amplitude of the small initial disturbance.
Secondary spikes are seen near the centre. Their amplitude again decreases with the
distance from the initial disturbance. Investigations of the flow development beyond
rupture require modification of (2.2), as discussed in the Appendix.

3. Concluding remarks

The fixed-contact-line condition in figure 1 can be relaxed by modifying (2.2) to
include the dynamics of moving contact lines. Break-up of ferrofluid drops under a
normal field, or the topological instability, can then be simulated. This generalization,
however, is beyond the scope the present note, and will be reported elsewhere.

In a horizontal layer, the hydrostatic pressure would stabilize the interfacial
instability, and thus require critical values of A or BiM/P for the onset of the
instability. In both (1.1) and (2.2) this hydrostatic stabilization can be realized by
adding a term —G(h’h,),/3 to the left-hand side, where G =gd?/v is a measure of
the layer thickness. In the evolution equations of the type discussed here nonlinear
ingredients are introduced through linear superpositions. Additional effects, such as
inclination, evaporation, or molecular forces, thus can be modelled without altering
the existing terms. If one wishes to include thermocapillary in (2.2), simply adding
the second term of (1.1) will suffice. The resulting evolution equation indicates,
among other features, that the normal-field instability can be suppressed completely
by sufficiently heating the layer from above (M <0). In addition to this mutual
stability control, the similarity of (1.1) and (2.2) suggests the possibility of simulating
a thermocapillary flow in thin layers with a ferrofluid experiment.
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Equation (2.2) can easily be extended to three dimensions, as done by Joo et al.
(1993) for a generalized version of (1.1), and then be used to study pattern formations
under a normal field. Combined with the contact-line dynamics mentioned above, this
may become a useful tool for further investigating the topological instability and the
labyrinthine instability, discussed among others by Rosensweig, Zahn & Schumovich
(1983).

This work is supported by the National Center for Nanomaterials Technology of
Pohang through Yeungnam University.

Appendix. Derivation of the evolution equation (2.2)

The full system is described by the magnetostatic equations (Ampere’s law and the
Maxwell equation) in all three phases (air, ferrofluid layer, and solid substrate) and
the hydrodynamic equations

Du
ey = —~ V- Al
V-u=0 and 5y V-o (A1)

in the ferrofluid layer. Associated boundary conditions are [[r x H]] =0 and
[[n - B]] =0 at both interfaces, where the double brackets denote a jump in quantities
and n is the unit normal vector of the interface. At the liquid/solid interface u =0, and
the normal and tangential component of surface traction balance [[n-0 -n]]=yV-n
and [[t -0 +n]] =0 are imposed at the air/liquid interface y = A, the location of which
is determined by the kinematic condition

8 h
h,—l—/ udy =0, (A2)
0x 0

where u is the x-component of the velocity vector.

We non-dimensionalize the above system using d, d*/v, v/d, and pv?/d* as
length, time, velocity, and stress scale, respectively, and apply a lubrication-type
approximation by rescaling the resulting system with & =ex and 7 =e€f, where €
is the smallness parameter, defined as the ratio of a typical horizontal length scale
to d. We then expand all dependent variables, except h, for small €: u(§,y, )=
uo(&,y,7) + eus(&,y,7) + - -+ for example, where identical expressions are used for
non-dimensional quantities for convenience. If we substitute these expansions into
the rescaled system, solutions to all dependent variables can be obtained sequentially
by solving linearized equations at each order. After substituting the second-order
solution u =u( + €u; into the rescaled version of (A 2) we obtain the evolution
equation (2.2) by changing & and t to the original non-dimensional x and ¢. As in
(1.1), the surface tension parameter S is retained by setting it to be of order € 2.

If one wishes to study the topological instability, (2.2) must be modified to allow
contact-line motions. The boundary condition u =0 at the liquid/solid interface then
is modified with a slip model to yield u = (Bu,/h",0), where B is the slip coeflicient
and n (> 1) is an appropriate integer. The amended evolution equation becomes

hy + A[(R* 4+ 28" "] + S[(F + 380> "h o], = 0. (A3)
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